
Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 4, Issue 1, September (2015)

ISSN: 2395-5317 ©EverScience Publications 26

Compatibility Aware Cloud Service Composition for

non-Xml Based Compositions using Fuzzy Inference

System

Naveen Kumar Kalavapalli

Research Scholar, Department of CSE, JNTUA College of Engineering, Ananthapuramu, India.

Abstract – Semantic web services are promoted as a way to

integrate web services in and outside the enterprise, while current

semantic web service frameworks including OWL-S, SA-WSDL,

and WSMO assume a uniform ecosystem of SOAP services and

XML serializations, increasing number of real time services are

being implemented using XML-RPC, RESTful interfaces and

JSON serialization which is a non XML serialization. Semantic

service platforms use XML mapping languages to translate an

XML serialization of the data into an on-the-wire message format.

This process of translation is known as grounding. The XML

mapping techniques suffer from two problems: they cannot deal

with the rising quantity of non-SOAP, non-XML services that are

being deployed on the Web, and requires knowledge

representation language used to represent service ontologies and

semantic descriptions with the help of modeler which is used to

create the descriptions of semantic web services to work with the

serializations of the service ontology and syntactic language

mapping. The proposed approach draw the service interfaces into

the ontology and define ontological objects that represent the

entire HTTP message, and then use backward chaining rules to

translate between cases of invocation of semantic services and

HTTP messages passed from and to service.

Index Terms – Cloud Service Compostion;Translation;Virtual

Devices.

1. INTRODUCTION

Cloud Computing has become one of the promising IT industry

technologies. Already there exists more than twenty definitions

for cloud computing. Amongst them, Ian Foster and his

colleague’s definition of a cloud highlighted the main aspects

of cloud such as dynamic scalability, available in the economy

of scale and the ability to scale-up request. According to them

cloud definition is : " A paradigm of distributed computing

which is driven by economies of scale and a group of abstracted

, virtualized, managed computing power, dynamically

scalable, storage , platforms and services are provided at the

request of external customers on the Internet. Moreover,

clusters, supercomputers are invoked on non SOA application,

while Cloud focuses on Web 2.0 and SOA technology. Though

Clouds implemented widespread communication protocols

such as HTTP and SOAP, integration and interoperability of all

services and the final service deployment will remain the

biggest challenges. Service deployment is the process of

making a service ready for use, and often includes the

deployment of several interdependent

software components in heterogeneous environments. Differe

nt approaches and tools discussed in terms of software and

hardware by environment description, dependency abstraction,

and process automation, to meet user needs. Among them, the

virtual appliances have been increasingly adopted by the

industry.

Virtual appliances, a meticulous set of virtual machines

optimized operating systems, pre-built, pre- configured, ready

to run applications and specific components of the integrated

system, emerging as a revolutionary technology to solve the

complexities of deployment service. Virtual appliances are

proven to provide better service deployment mechanism.

Therefore, they will be adopted as a major component working

in the Cloud layer application. Nevertheless, most related work

focused on meeting the needs of the user by using SOA and

virtualization, neglecting the suitable cloud computing

environment as a service deployment resource provider. It is

complex to implement syntax and semantics of virtual machine

description and user requirements in a heterogeneous

environment such as Cloud. Therefore, the symmetric

adjustment based on attributes applied between needs and

demand is impossible. To address these problems, we propose

a flexible approach to make the discovery of cloud virtual units

based on ontologies. Following are the major contributions

offered by this work

1) Presenting an approach that gives enough flexibility for end

users to find the appropriate appliances from range of suppliers

and deploy dynamically on different IaaS infrastructure

providers [7, 8].

 2) An advertising approach is offered for IaaS providers based

on modeling virtual devices in one of the most important

initiatives in the services of the Semantic Web, i.e. Web

Service Modeling Ontology

3) Using ontological discovery for QoS deployment of virtual

appliances on IaaS providers. This allows users to deploy their

devices on the most appropriate IaaS providers according to

their QoS preferences when both parties (suppliers and users)

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 4, Issue 1, September (2015)

ISSN: 2395-5317 ©EverScience Publications 27

are not using the same information to illustrate their services

and requirements.

2. RELATED WORK

Konstantinou et al. Proposed an approach to plan, model, and

deploy Cloud service compositions. In their approach, the

deployment plan and solution model for the composition in

Cloud platform are developed by expert users and executed by

untrained users. Similarly, in our system, set of compatibility

constraints from experts were captured to simplify the process

of deployment used for end users by eliminating invalid

composition solutions. However, as they also mentioned, their

work lacks an approach for appliance selection and their

placement on the Cloud which is offered by our work. Likewise

Chieu et al. Proposed an automated deployment of integrated

solutions using composite appliances. Even in their work, QoS

objectives are not considered. In the same way another work

has utilized Intuitionistic Fuzzy Set (IFS) for ranking service

compositions in the Grid and SOA environments. It does not

deal with user’s constraints such as compatibility and whenever

the problem is NP-hard (like cloud service composition

problem) the execution time is unacceptable. Moreover, in

comparison with the work which considered evolutionary

approach such as NSGA-for service composition our approach

improves the composition solution diversity and convergence

and decreases the execution time. Unified Cloud Interface

(UCI) provides ontology model for modeling Amazon EC2

services. Mosaic project is proposed to develop multi-Cloud

oriented applications. In Mosaic, Cloud ontology plays and

essential role, and expresses the application’s needs for Cloud

resources in terms of SLAs and QoS requirements. It is utilized

to offer a common access to Cloud services in

Cloud federations.

Figure 1: Translation of Cloud Composition

However, none of these ontologies focus on modeling of

compatibility of Cloud services. The first step towards

describing services and their QoS is to communicate with

Clouds and the Cloud monitoring services through their APIs

and gather required meta-data for building the repository. The

process of metadata translation is demonstrated in fig.1. The

components involved in this process are:

2.1 Integrity Checking

This component merges output messages of API calls for

getting Cloud services description using Extensible Style sheet

Language Transformations (XSLT) and then compares them

with the previously merged messages using a hash function. If

the outputs of the hash function are not equal, the component

calls the Sync component to update the semantic repository.

2.2 Sync Component

The main use of this component is to keep the semantic based

repository consistent with the most recent metadata provided

by Cloud providers. The synchronization component is

computing intensive, hence it is avoided unless the integrity

checking component detects any inconsistency. This

component receives the output message that is required for

synchronization and finds the corresponding semantically rich

services and updates them with the output of translator

component.

2.3 Translator Component

When communicating a customer at the semantic level and a

syntactic level web service, two data transformation directions

are necessary. They are: Customer’s semantic data must be

written in an XML format that can be sent as a service request,

and returning response data must be interpreted semantically

by the customer. We use our customized Grounding technique

on WSDL operations (that are utilized to acquire virtual

appliance and unit metadata) output to semantically enrich

them with ontology annotations. WSMO offers a package,

which utilizes Semantic Annotations for WSDL (SAWSDL)

for grounding. It provides 1. Two extensions attribute namely

as Lifting Schema Mapping and Lowering Schema Mapping.

Lowering Schema Mapping is used to transfer ontology to

XML and lifting Schema Mapping does the opposite. In our

translator component, the lifting mapping extension is adopted

to define the process of how the XML instance data that is

obtained from Clouds API calls is transformed to a semantic

model.

There are a number of existing approaches that are capable of

handling with incompatible services. However, many of them

only paid attention on the compatibility of input and output

(I/O) services and do not consider the inconsistencies that are

caused by regulatory and further factors that are not related to

features on duty. In addition, the OPTIMIS optimizes the entire

lifecycle of services, from the construction and deployment

services, to operating in cloud environments. The criteria of

quality of service in OPTIMIS are trust, risk, eco- efficiency

and cost. Evaluating cloud provider is achieved through the

adoption of analytic hierarchy process approach (AHP) .The

proposed approach can deal efficiently with a huge number of

cloud services in the repository. The current implementation of

the translator component is supporting cloud services based on

XML. Specifications like Open Cloud Computing Interface

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 4, Issue 1, September (2015)

ISSN: 2395-5317 ©EverScience Publications 28

(OCCI) aims to provide a standard way to describe the cloud

resources. Therefore, the research approaches that can enrich

semantically this new formalism can be taken as a research

direction to further enhancement of translator component.

3. PROPOSED WORK

This approach draws the service’s interface into the ontology:

it define ontological objects that represent the entire HTTP

message, and then use backward chaining rules to translate

semantic service invocation instances into the HTTP messages

which are passed to and from the service. This novel technique

is based on various principles:

1. Aim HTTP, the Web’s local protocol: all the three Web

service approaches such as SOAP, XML-RPC, and RESTful,

use HTTP.

2. HTTP takes not only XML, but others like JSON

serialization, text and images, sound and other data.

3. Stay in the ontology language: the fewer languages the

engineer of the semantic service faces, the better will be the

translation. When a semantic broker calls a web service, it

results in an ontological abstract representation of the service

invocation in a HTTP message that can be sent to the server.

The server response is timely, and translates the HTTP message

into an ontological representation of the result. These two

processes are known as the lowering and lifting respectively.

In this system, two generic rules are defined, which are called

lower and lift

(lower ? serviceType ? serviceInvocation ? httpRequest)

(lift ? serviceType ? httpResponse ? serviceInvocation)

1. Specification of WSMO deftly dodges the question of

grounding any type of Web service, the current SOAP

implementations are WSMO centric.

2. Each Web service description can define its own version of

lift and lower, which distinguishes the broker to unify? Service

Type parameter so as to name the service being invoked.

?service Invocation represents the abstract invocation message

and? httpRequest, ?httpResponse are the ontological

representations of on-the-wire messages. The successful

completion of the lower rule leads to the creation of

?httpRequest, that can be interpreted by the broker to describe

the Web service. Once a response is received from the server,

the rule of the lift works on the? httpResponse and modifies the

original ?service Invocation frame to save the original return

values. We applied the method in the Internet Reasoning

Service (IRS) and a WSMO based broker using OCML for its

Ontology Language. We now demonstrate an approach extends

itself JSON serialization. JSON is a simple derivative of

JavaScript data format, and is becoming more popular as a

lightweight substitute to XML, mainly in the RESTful services.

The lift and lower rules could directly operate JSON string

representations, but it becomes awkward, prone to error, and

fail to model changes significantly. Instead, we introduce a

simple, ontologization of JSON.

JSON is built on the basis of objects and arrays. An object is a

disordered set of key and value pairs, while an array is a series

of values. Values may be numbers, strings, Booleans, objects,

or null. In OCML, JSON ontologization enter a value of top-

level class, which is then classified by Array and Object. An

object consists of a list of elements, where each element of the

list is a pair containing a key (a string) and a value. An array

consists of a list of items, where each item in the list is worth.

Finally, the JSON value - types such as string, number, and

Boolean values are correspond to the equivalent OCML built-

in types, while JSON null values are considered as nil. The

JSON ontologisation in OCML is converted into the string of

serialized JSON.

4. ANALYSIS

To illustrate how we can invoke, uniformly, web services using

JSON and XML, we use two Flickr services: a) a list of recently

changed photos in a user's account (flickr

.photos.recentlyUpdated), and b) a list of formats in which

those available (flickr.photos.getSizes).

We are going to land the first service in a RESTful way,

consuming JSON, and the second service via XML-RPC,

consuming XML output, the integration of services at the

ontological level. We start by lowering rule for service

flickr.photos.recentlyUpdated

The rule is simple, the first half is concerned with the extraction

of the necessary arguments from the? Invocation, and the

second half to build body of an argument using those argument

values. The rule sign Arguments handle arguments login with

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 4, Issue 1, September (2015)

ISSN: 2395-5317 ©EverScience Publications 29

a valid key of the Flickr account, whereas argstoRestRequest

will convert the arguments set into URL parameters as Param I

= value I & Param II = value II... and then sets the?http-request

fields properly. While lifting the response, extract the contents

of? Http-response into an ontological model of JSON. This

extraction is performed by the two rules

extractPhotoFromJson, extractPhotoListFromJson

respectively. With the use of these extraction rules a list of

photographs is occurred. With this list of photographs

represented in OCML, we can invoke the second rule

flickr.photos.getSizes with the help of XML -RPC

This time, the conversion of the subject of the invocation

argument pairs used by Flickr is done in another rule

argsForPhotosGetSizes. The use of a rule that means we could

share the logic between the XML-RPC version, and a REST or

SOAP version. The whole argument is again

signed with signArguments and forwarded to argsToXmlrpcR

equest rule. ArgsToXmlrpcRequest The rule fulfills a similar

function to argsToRestRequest, but this time, we are creating

an XML message - RPC with a structure to hold the pairs,

rather than integrating them into a URL.

5. RESULTS

In this paper, we have described Fuzzy Logic, an open source

Java library for fuzzy systems which allow us to design FLCs

following the standard. It allows us to reduce programming

work and extend the range of possible users applying fuzzy

systems and FLCs. In this case, we developed an FLC

controller for wall following behavior in a robot. The example

shows how FLC can be used to easily implement fuzzy logic

systems. The Fuzzy Logic software package is continuously

being updated and improved. At the moment, we are

developing an implementation of a C/C++ compiler for fuzzy

inference systems. This will allow easy implementation with

embedded control systems using different processors.

In proposed system providing security to cloud service

provider to evaluate reliability and trust of providers from user

feedbacks and monitoring services together this consists of

collecting required raw data from trusted sources and

statistically analyzing and aggregating them. When the number

of preferences defined by the user using the if-then rule

increases, the solution’s prominence In proposed system

calculate the user trust values because only trusted values to be

considered. This will provide the security to cloud. When

untrusted values are come it will be deleted Using Integer

Linear Programming to optimize the cost and time.

Major Cloud providers have large repository of virtual

appliance and unit services. For example, the size of Amazon

Web service repository alone is larger than 10.6 megabytes. To

enhance the efficiency of the translation approach we only

synchronize when the translation service is triggered by

checking the integrity of the component. The number of

services increased the in the repository by merging repositories

from various Cloud providers to investigate the scalability of

our approach in terms of execution time needed for the

translation. For each case of repository size, the experiment is

repeated for 30 times and the values are plotted in Fig3.

Regression analysis shows a positive and linear relationship

between the repository size and the translation time. The

evidence confirms that the regression coefficient is 0.6621,

which suggests that if the size of the data to be translated

increases by a megabyte, the translation time increases

approximately by 0.6 second. Therefore, the synchronization

function can be executed online in an adequate time even if a

significant percentage of virtual appliance and unit properties

are updated.

Figure 2: Execution Time Vs Repository Size

6. CONCLUSION

In this work, when communicating a customer at the semantic

level and a syntactic level web service, two data transformation

directions are necessary. They are: Customer’s semantic data

must be written in an XML format that can be sent as a service

request, and returning response data must be interpreted

semantically by the customer. The system uses a customized

grounding technique on WSDL operations that are utilized to

acquire virtual appliance and unit metadata output to

semantically enrich them with ontology annotations. WSMO

offers a package, which utilizes semantic annotations for

WSDL for grounding. It provided two extensions attributes

namely Lifting Schema Mapping and Lowering Schema

Mapping. Lowering Schema Mapping is used to transfer

ontology to XML and lifting Schema Mapping does the

opposite. In the translator component, the lifting mapping

extension is adopted to define the process of how the XML

instance data that is obtained from Clouds API calls is

transformed to a semantic model.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 4, Issue 1, September (2015)

ISSN: 2395-5317 ©EverScience Publications 30

REFERENCES

[1] Amir Vahid Dastjerdi, Member, IEEE and Rajkumar Buyya, Senior
Member, IEEE (2014) Compatibility-Aware Cloud Service Composition
under Fuzzy Preferences of Users IEEE TRANSACTIONS ON CLOUD
COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2014

[2] J. De Bruijn, H. Lausen, A. Polleres, and D. Fensel, “The web service
modeling language wsml: An overview,” in Proceedings of the 3rd
European conference on The Semantic Web: research and applications,
2006.

[3] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Proceedings of the Grid Computing
Environments Workshop (GCE),

[4] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D.,
McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin,
E., Srinivasan, N., Sycara, K.: OWL-S: Semantic Markup for Web
Services. W3C member submission, World Wide Web Consortium
(W3C) (November 2004)

[5] Lausen, H., Polleres, A., Roman, D.: Web Service Modeling Ontology
(WSMO). W3C member submission, World Wide Web Consortium
(W3C) (June 2005)

[6] Lambert, D., Domingue, J.: Photorealistic semantic web service

groundings: Unifying RESTful and XML-RPC groundings using rules,
with an application to Flickr. In: Proceedings of the 4th International Web

Rule Symposium (RuleML 2010). (October2010).

[7] Aarti Singh, Manisha Malhotra, “Security Concerns at Various Levels of
Cloud Computing Paradigm: A Review”, International Journal of

Computer Networks and Applications, 2(2), 41-45.

[8] Sumandeep Aujla, Amandeep Ummat. “Task scheduling in Cloud Using
Hybrid Cuckoo Algorithm”. International Journal of Computer Networks

and Applications (IJCNA), 2(3), 144-150.

Authors

Kalavapalli Naveen Kumar is a M.Tech scholar in

JNTUA College of Engineering (Autonomous),

Ananthapuramu. He received his B.Tech degree from

JNT University Anantapur, Ananthapuramu. His areas

of interests include Cloud Computing, Machine

Learning and Data Mining.

